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Abstract: The progress in the practical use of glassy carbon materials has led to a considerable interest
in understanding the nature of their physical properties. The electrophysical properties are among
the most demanded properties. However, obtaining such materials is associated with expensive and
dirty processes. In nature, in the course of geological processes, disordered sp2 carbon substances
were formed, the structure of which is in many respects similar to the structure of glassy carbon
and black carbon, and the electrical properties are distinguished by a high-energy storage potential
and a high efficiency of shielding electromagnetic radiation. Given the huge natural reserves of
such carbon (for example, in the shungite rocks of Karelia) and the relative cheapness and ease of
producing materials from it, the study of potential technological applications and the disclosure of
some unique electrophysical properties are of considerable interest. In this paper, we present an
overview of recent studies on the structure, electrophysical properties, and technological applications
of natural disordered sp2 carbon with the addition of novel authors’ results.

Keywords: natural disordered sp2 carbon; molecular and super-molecular structure; electrical and
thermal conductivity; applications

1. Introduction

In recent years, the number of studies reporting the successful use of disordered sp2

carbon (Dsp2C) materials in various technological processes is growing. A recent review
article about the use of synthetic glassy carbon in advanced technological applications [1]
clearly shows rapid technological progress in this field. At the same time, the production
of materials with a glassy carbon structure is associated with several environmentally
dirty processes. In the earth’s crust, “ready-made” Dsp2C is quite common, and its use in
technology will be cheaper and more environmentally friendly than its synthetic structural
counterparts. In addition, the natural origin provides a variety of precursors and physic-
ochemical characteristics of formation processes in different geological settings, which
allows reducing the cost of laboratory production of certain types of carbon materials to
study the effect of changes in various structural and chemical parameters in the experiment.
One of the most demanded properties of Dsp2C is its electrical conductivity, which, in
combination with thermal and chemical stability, gives good prospects in the industry.
This paper discusses the origin, structure, and electrical properties of naturally occurring
disordered sp2 carbon and basic areas for application of its electrical properties.

2. Formation of Disordered sp2 Carbon in Nature: Thermodynamic Conditions,
Carbon Sources, Processes

Hydrocarbon compounds (primarily petroleum and bitumen) under the physicochem-
ical conditions of the earth’s crust are transformed in the direction of carbonization (or
dehydrogenation), with the elimination of most non-carbon components (Figure 1) [2], and
in the direction of graphitization as a structural rearrangement of the aromatic skeleton
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formed during carbonization into a stable-layered graphite structure (sp2-hybridized) [3–5].
The process of graphitization of hydrocarbon compounds is irreversible, but it is not always
terminated with the formation of graphite, both in terms of structure ordering and in terms
of removal of hydrogen, oxygen, nitrogen, and sulfur heterocompounds. Condensation of
carbonaceous matter can occur at the stage of formation of graphite-like nanostructures of
various degrees of order and sizes [6] and can also end with the formation of structures
such as multilayer ribbons and fullerenes [7,8]. In the sequence of carbonization (dehy-
drogenation) of hydrocarbon compounds, according to their physicochemical properties,
a class of substances of the highest degree of transformation (carbonization) was distin-
guished, which was characterized by the so-called pre-graphite structural stage [9–11].
Such substances are distinguished by an almost pure carbon composition (usually over
95%) and the absence of solubility in organic solvents (for example, chloroform), and
their distinctive physical property is electrical conductivity. According to the indicated
properties, these substances are similar to graphite, while their critical difference with
graphite is the absence of a bulk crystal structure (three-dimensional hkl reflections on X-ray
and electron diffraction patterns). There is only two-dimensional graphite-like ordering
as the proximity of interplanar distances to the 002 graphite plane. Dsp2C is porous, and
accordingly has a lower density (1.5–2.2) and a larger specific surface area than graphite.
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Dsp2C is often present in oil and gas basins and in ore deposits of hydrothermal origin 
[11–13]. The geological conditions for the formation of such carbon in petroleum and gas 

Figure 1. Van Crevelen diagram of carbonization (dehydrogenation) showing the alteration of H/C
atomic ratios versus O/C. Dsp2C (represented by shungite) is limited to a narrow region close to the
end member of pure carbon (adapted from [2]).

Dsp2C is often present in oil and gas basins and in ore deposits of hydrothermal
origin [11–13]. The geological conditions for the formation of such carbon in petroleum
and gas source formations are deep catagenesis, metamorphism, intrusive magmatism,
and post-magmatic hydrothermal activity [14–16]. The occurrences are known in rocks of
all ages, including the most ancient Precambrian paleobasins, more than 2 billion years
old. The scale of occurrences of Dsp2C in the Earth’s crust varies over a very wide range.
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Dsp2C both fills micro-sized pores in rocks and forms multi-meter reservoir deposits and
large veins tens and hundreds of meters long (Figure 2). The occurrences of Dsp2C have
been found on all continents. The most fully characterized in the literature is the non-
crystalline carbon of shungite occurrences in Karelia (Lake Onega region, Russia) [17,18].
Interest in shungite carbon increased after the first discovery of fullerenes of geologi-
cal origin in it [19]. In addition to the shungite rocks of Karelia, significant occurrences
with well-characterized structure and properties of Dsp2C (referred to in the geological
and mineralogical literature as anthraxolites and pyrobitumen) are located in Bakyrchik
(Kyzyl fault zone, Kazakhstan) [20–22], Mitov (Bohemian massif, Czech Republic) [23,24],
Novaya Zemlya island (Russia) [25], Sichuan province (China) [26], the Sudbury Astrob-
lem (Canada) [27–29], the Franceville Sedimentary Basin (Gabon) [30,31], the Michigan
Formation (USA) [32,33], and many others.
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currence Rucheynoye, Kozhim River, Subpolar Urals, Russia (c). Rock (quartzite) impregnated with 
Dsp2C, Maksovo occurrence, Karelia (d). 

The formation of Dsp2C is associated with volcanic or high-temperature hydrother-
mal metamorphism of hydrocarbons in or near petroleum deposits. Dsp2C is a derivative 
of petroleum or substances similar to petroleum (for example, viscous bitumen) formed 
during the natural pyrolysis of kerogens under severe thermal and/or baric conditions, 
since their metamorphism occurs at depth. Additionally, the thermal impact of volcanic 
intrusions or their supply channels on bitumen occurrences in the surface layers of the 
Earth’s crust is possible. The precursors of Dsp2C (petroleum and viscous bitumen) mainly 
originate from lacustrine algae and marine microorganisms, for example, during local 
contact heating of sapropelic algae massifs by volcanic intrusions or hydrotherms. The 
organic matter of terrestrial plants, as a rule, is transformed to coal, which is not the object 
of consideration in our work. Graphitizable carbon is characterized by precursors en-
riched in hydrogen, while non-graphitizable carbon has precursors with a more complex 
composition, enriched primarily in oxygen and sulfur [34]. 
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Figure 2. Typical occurrences of natural Dsp2C: shungite carbon vein (Shunga occurrence, Karelia),
with a typical sample in the inset (a). Cluster form of inclusions of Dsp2C in the rock, Zazhogino
occurrence, Karelia (b). Dsp2C isolations as grains (indicated by yellow arrow) in a calcite vein,
occurrence Rucheynoye, Kozhim River, Subpolar Urals, Russia (c). Rock (quartzite) impregnated
with Dsp2C, Maksovo occurrence, Karelia (d).

The formation of Dsp2C is associated with volcanic or high-temperature hydrothermal
metamorphism of hydrocarbons in or near petroleum deposits. Dsp2C is a derivative
of petroleum or substances similar to petroleum (for example, viscous bitumen) formed
during the natural pyrolysis of kerogens under severe thermal and/or baric conditions,
since their metamorphism occurs at depth. Additionally, the thermal impact of volcanic
intrusions or their supply channels on bitumen occurrences in the surface layers of the
Earth’s crust is possible. The precursors of Dsp2C (petroleum and viscous bitumen) mainly
originate from lacustrine algae and marine microorganisms, for example, during local
contact heating of sapropelic algae massifs by volcanic intrusions or hydrotherms. The
organic matter of terrestrial plants, as a rule, is transformed to coal, which is not the
object of consideration in our work. Graphitizable carbon is characterized by precursors
enriched in hydrogen, while non-graphitizable carbon has precursors with a more complex
composition, enriched primarily in oxygen and sulfur [34].

Physicochemical conditions for the formation of Dsp2C in nature are estimated from
geological records. The lowest temperature stage of formation is the greenschist facies
with a temperature range of 250–550 ◦C at a pressure of 1.5 to 4 kbar. In the hydrothermal
process, the transformation occurs at a temperature of about 360 ◦C and a little higher.
During volcanic contact metamorphism, the temperature of impact on hydrocarbon matter
is the highest in the Earth’s crust. In the zone of contact between rocks and magma, an area
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of rock heating is formed, where the temperature reaches 500–900 ◦C. The maximum range
of such metamorphism is 2–5 km. In rare cases, the formation of disordered sp2 carbon
is accompanied by a local increase in pressure in the zones of tectonic faults [11]. This is
conditioned by the fact that pressure accelerates graphitization, and under such conditions,
the formation of well-crystallized graphite is more likely than Dsp2C [35–37].

3. Structural Characteristics and Models of Natural Disordered sp2 Carbon

The object of our consideration is Dsp2C, which makes its structural characteristics
ambiguous. It does not graphitize during high-temperature (up to 2900 ◦C) treatment [38]
under normal pressure conditions. The development of physicochemical methods allowed
determining some structural features and chemical composition, but electron and X-ray
amorphism still does not allow to unambiguously describe its structure. For example, at
different times, the carbon of shungites was defined by researchers as weakly ordered
graphite [39], amorphous carbon [4], natural metastable non-graphitic carbon [40], natural
glassy carbon [41], and fullerene-like carbon in the group of non-graphitic natural carbona-
ceous substances [42,43]. In this section, the main models of the structure of natural Dsp2C
are considered, primarily using shungite carbon as an example.

3.1. Molecular Structure

The basis of the molecular structure of natural Dsp2C is a graphene grid. The size and
shape of these grids vary depending on the type of supramolecular structure to which the
grid belongs. The following main supramolecular structures were found in natural Dsp2C:
turbostratic stacks of graphene layers (grids), multilayer ribbons, fully enclosed multilayer
globules, and partially closed multilayer cups (Figure 3).
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Figure 3. Basic structures of Dsp2C: (a) typical entangled structure, (b) ribbon structure, (c) stacks of
graphene layers, and (d) fullerene-like single-layer and multilayer structures.

In stacks, grids are predominantly 1–7 nm in size, and interlayer (interplanar) dis-
tances range from 0.341 to 0.360 nm (according to Kovalevsky [42,44] and Aleshina and
Fofanov [45]). This exceeds the interplanar distances characteristic of graphite (0.335 nm).
The shape of grids 1–2 nm in size is predominantly flat and even; however, with a further
increase in size, the number of curved and crumpled grids increases. There are defects
in the subtraction and insertion of grids within the graphene packs. It is likely that such
local distortions of various nature result in the deformation of the internal structure of the
graphene grid. For example, according to Kovalevsky, the carbon layer in the graphene
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grid is deformed by the type of compression and tension in different directions, which leads
to a decrease in the hexagonal symmetry of the graphene layer to trigonal [43] (Figure 4).
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Figure 4. Deformation of a graphene layer (left) and displacement of flat graphene layers relative to
each other in the stack (right).

In the stacks, the layers are turbostratically arranged. They are slightly deployed and
(possibly) displaced relative to each other (Figure 4). As the reason for such an arrangement
of layers, one can indicate the effect of edge functional groups. During the formation
of carbon from the initial hydrocarbon substance, the structure of the graphene network
condensed due to the destruction of the oxygen and hydrogen components. However, these
functional groups (primarily oxygen groups) terminated the edges of graphene grids and
prevented their further growth. Additionally, the van der Waals interaction of functional
groups located in adjacent layers of packs “unfolded” the graphene layers relative to each
other, preventing them from forming three-dimensionally ordered graphite nanocrystals.
Such a pack can also be represented as an element of the supramolecular structure of Dsp2C,
since it consists of graphene molecules linked by non-covalent bonds.

The calculation from X-ray diffraction curves allowed determining that the grids were
either flat (in this case, they consisted of 280–300 atoms) or curved (consisted of 180–200 atoms),
and formed packets of five to six layers, within which the grids are chaotically displaced
and misoriented relative to each other [45]. Some nodes, both in flat and curved grids, are
vacant (their share of the total number is 5–15%). The deformation of the graphene layer
can also be associated with the presence of pentagonal or heptagonal ring structures in it.
If the graphene layer simultaneously contains pentagonal and heptagonal ring structures,
then the layer will be bent in different directions, i.e., corrugated. Similar structures have
been found in addition to shungites in the anthraxolites from Novaya Zemlya, Kazakhstan,
Mitov, and others.

In a series of works [46,47], shungite carbon is presented as a fractal multilevel structure.
The authors consider fragments of reduced graphene oxide (RGO) with linear dimensions
of ~1 nm as its main elements. Here, the structure of shungite carbon is based on nanosized
RGOs, which, like their synthetic analogs [47,48], are formed as a result of a sequence of
chemical transformations associated with the removal of oxygen-containing groups from
the basal planes of graphene grids (Figure 5). The initial product for RGO formation
was nanosized carbon fragments (lamellae). Simple oxygen-containing groups from the
surrounding aqueous fluid acted as lamella oxidizers. The restoration of the lamellae
took place under hydrothermal conditions for a long geological time, which ensured the
occurrence of chemical reactions to their final stages. The difference between this graphene
grid model and the work of Aleshina, Fofanova, and Kovalevsky lies primarily in the fact
that in the model of Sheka, the graphene grid is assumed to be flat with a necklace of
heteroatoms along the edges. The second structural level consists of five- to six-layer stacks
of the indicated RGO fragment. Globules composed of these stacks, with linear dimensions
of 3–6 nm, form the third structural level, and aggregates of globules, detected by scanning
probe microscopy [49–51] and having sizes from 20 to 100 nm, form the final structural level.
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Figure 5. Scheme of the formation of a super-molecular globular structure of natural Dsp2C (from [52])
through the formation of a stack of graphene layers as basic structural units (BSU) with subsequent
aggregation of stacks into a rounded particle (globule). The globules are shown in an atomic force
microscope (AFM) image. Along the edges of graphene molecules are heteroatoms (hydrogen (red balls)
and oxygen (blue balls)).

Such models are confirmed, in particular, in the data of high-resolution transmission
electron microscopy (HRTEM) [42,48,53–55]. Modern high-resolution images of the structure
of natural Dsp2C show a significant proportion of rectilinear bands up to several nanometers
long. These bands are projections of the carbon atomic planes oriented almost parallel to the
electron beam, which were referred in [48] to the basic nanosized RGO. Figure 6 shows that
these planes are grouped into stacks. The distances between planes in stacks are 0.34–0.38 nm.
Figure 6 clearly shows the grouping of atomic planes into stacks of 4–7 layers, which in the
early works of Kovalevsky were interpreted as stacks of graphene layers [42]. Generally, in
the shungite, the carbon layers as a rule are combined into stacks of 5–14 layers. Obviously,
these stacks are misoriented relative to each other in the image plane. Due to the difference
in the orientation of the stacks relative to the direction of the electron beam, some of them
may not be visible under these measurement conditions. This hinders the estimation of the
distribution density of such fragments; however, it seems to us that it is these piles that are
the dominant structural element of Dsp2C in the size range of 1–10 nm.
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The Raman spectroscopy also specifies a similar structure of nanosized stacks as
another very informative method to study the structure of Dsp2C. In the 21st century,
Raman scattering has rapidly become the dominant method for testing carbon solids based
on graphene. Two approaches have been developed to understand Raman scattering in such
structures. The solid-state approach is formed based on phonon scattering in both perfect
and defective crystals, while the molecular approach is based on the analysis of vibrations
of free molecules (for a review, see [56]). The similarity of the spectra for defective and
highly disordered graphite crystals, represented by the D, G, and 2D key bands, allowed
using and improving the solid-state approach to characterize the sp2 carbon structure,
including the nanoscale one, using the position, width, and intensity of these bands. The
solid-state approach was also applied to Dsp2C. But, due to the structure disorderness
and the small size of the graphene layers packs the correctness of this approach is weak
in comparison the molecular approach to the Raman spectra of natural Dsp2C [57,58]. In
general, despite the difference in theoretical foundations, the key result of the interpretation
of Raman spectra in the framework of both approaches is the assessment of the structure of
natural Dsp2C as a set of stacks of graphene layers with sizes of a few nanometers [55,57,58].
It should be noted that a reliable estimate of the packet sizes from Raman spectra at the
current stage causes great difficulties for the objects of our study [57,58].

In [5,52], as a result of a comprehensive study of a wide range of objects using modern
methods, natural Dsp2C is presented as an aggregate of nanosized stacks of graphene layers
with edge impurities, such as hydrogen, oxygen, nitrogen, and sulfur, which are attached to
the carbon core through chemical bonds. Models of the main structural units in the form of
framework graphene oxyhydrides of nanometer size are proposed. The composition of the
edge oxygen-containing groups allowed separating natural Dsp2C into disordered “C=O”
(shungite carbon) and disordered “C=O–C–O” (anthraxolite carbon). This confirms the
assumption about the chemical nature of shungite carbon as reduced graphene oxide. The
radical nature of the basic structural units makes natural carbon a source of stable radicals.

Shungite carbon is also characterized by curved layers of different lengths covering
the pores. A similar bowl-like model of the structure with carbon “cups” (as segments
based on which fullerene-like structures are further formed) about 1 nm in size is confirmed
by the results of solid-state 13C and 1H nuclear magnetic resonance spectroscopy [59].
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3.2. Super-Molecular Structure

For a long time, the super-molecular structure of natural Dsp2C was not the focus
of researchers. The interest of physicists and materials scientists in the super-molecular
structure of Dsp2C drastically increased after the publication of fullerenes of geological
origin found in Karelian shungites [18]. Earlier, Kovalevsky created a model where the
fundamental element of shungite carbon is a fullerene-like globule. After publication [18],
the Kovalevsky model for a long time became the dominant idea of the super-molecular
structure of shungite carbon [60,61]. According to the model, a shungite globule is a
spherical or ellipsoidal multilayer carbon formation about 10 nm in size, presumably with
a pore inside (Figure 7). The main arguments in favor of the model are the presence of two
types of pores (open and closed) in shungite carbon (see [44] and references therein), and
the results of processing HRTEM images using the Cowley method [42].
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A direct image of the globular structure of shungites was first obtained by scanning
tunneling microscopy in [49]. Later, the globular structure of shungite carbon for all
major deposits of Karelia and anthraxolites was studied in detail by scanning tunneling
and atomic force microscopy [50,51]. Atomic force microscopy visualizes globules of a
spherical or ellipsoidal shape, predominantly 20–70 nm in size. There is no regularity in the
arrangement of globules; however, regularities of globule aggregation are distinguished [54]
due to their grouping into chains (Maksovo, Perya). Similar structures are also characteristic
of synthetic glassy carbon [62].

Ribbon-like structures are present in all studied shungites, as well as in most anthrax-
olites (Figure 3). Such a structure was found only at the beginning of its study using
high-resolution transmission microscopy. It is difficult to trace the length and bends of the
ribbons from 2D images, however, it can be said that the ribbons have a length of tens and
(possibly) hundreds of nanometers and are tangled into rather complex configurations, and
at the same time loose knots. Single-layer fullerene-like particles 1–2 nm in size are also
often present in the structure of Dsp2C (Figure 3).

A reliable statistical analysis of the ratio of different structural forms of carbon is
difficult due to the locality and selectivity of the high-resolution transmission microscopy
method. Here, very limited areas are studied, not all structural fragments in which are
in a reflective position, and therefore are not visible in the images. The authors of [48]
attribute the curvature of primary RGO fragments to the presence of various mineral
inclusions accompanying the formation of shungite, from micro–nano-sized particles of
silica to nanoparticles of native metals in close proximity to them or in contact with them.

Thus, the complexity of the structure of disordered carbon does not at present allow
building a universal model of the structure. This led to the selection of basic elements
that formed the structure and determined the most significant properties. This approach
was successfully used by Kovalevsky to describe shungite carbon as natural fullerene-like
carbon. The globular structural component was singled out by him as the most significant.
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In [46,47], a flat graphene sheet about 1 nm in size, which is graphene oxide reduced in an
aqueous medium, was proposed as the main element. These sheets form stacks, which are
further folded into nanosized globules and larger particles. An analogy of the structure of
natural Dsp2C is possible within the framework of the ribbon glassy carbon model.

In general, the molecular and super-molecular levels of natural Dsp2C are charac-
terized by mixed structural forms (ribbons and turbostratic packages of graphene layers,
multilayer rounded, and flattened globules) based on the graphene grids, which are par-
tially present both in natural (kerogen, anthracite) and technical (glassy carbon, soot)
materials. There is a wide range of sizes of structural elements, their shape, and types
of defects. These features can be explained by the different origin of the hydrocarbon
precursor, the duration and intensity of heating, the magnitude of the applied pressure,
as well as a change in the mobility of heteroatoms during the formation process and their
initial composition [11].

4. Conductive Properties of Natural Disordered sp2 Carbon

The section will show the static and dynamic conductivity of natural Dsp2C, their
dependence on temperature, and current frequency (for dynamic conductivity).

4.1. DC Conductivity

Electrical conductivity is one of the key diagnostic features of highly transformed
disordered natural carbon, which clearly distinguishes it from all less transformed solid
natural hydrocarbon compounds. As a rule, the electrical conductivity of natural Dsp2C is
isotropic, and only some samples have a pronounced anisotropy of electrical properties.

The conductivity of Dsp2C is determined by the following factors: (i) concentration of
free charge carriers, which is determined by the structure of carbon, the size of the stacks
of graphene layers and the distance between them, and their defectiveness, (ii) humidity
(ion concentration) over the surface and in the volume of carbon, and (iii) temperature
of heating. Here, we will consider the conductivity of dried carbon samples. The largest
number of studies of electrically conductive properties at present has been carried out for
the carbon of shungites.

Mineral inclusions often occur in carbonaceous rocks. These minerals are generally
dielectric and significantly affect the conductivity of the samples. In [63], when studying
the electrically conductive properties of 200 samples of shungite in the range of carbon
contents from 5 to 65 wt.%, the dependence of the conductivity, σ, on the carbon content
was revealed, empirically described by the expression:

σ = 1.5 C1.87 (1)

where C is the percentage (weight) of carbon content (Figure 8). The electrical conductivity
of pure carbon samples from different occurrences is different (Table 1). Considering
that in these samples the carbon content is not 100%, but is approximately 90–95 wt.%,
then according to Expression (1), the maximum conductivity of the pure carbon phase in
shungites was estimated as 8250 S/m. In later studies [64], the conductivity of shungite from
Shunga was determined as 8000 S/m, which is generally comparable with the results [63].
Thus, the conductivity of shungites is comparable to the conductivity of natural graphite
across the graphene layers [65].
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Temperature dependences for resistivity (ρ), Hall mobility (µ), and Hall coefficient (RH) in
the temperature range T = 80–500 K in shungite were described in [66]. At room temperature,
shungite carbon showed the following parameters: ρ = 3.53 · 10−3Ω cm, µ = 8.0 cm2/V s,
RH = −2.83 · 10−2 cm3 C−1, and charge carrier concentration n = 2.2 · 1020 cm−3. At the
same time, ρ, µ, and RH weakly depend on the change in temperature. The author draws
attention to the similarity in the behavior of the temperature dependence of the Hall coefficient
in shungite carbon and in single-crystal graphite. In both cases, RH has a negative sign and
a small absolute value. Additionally, the Hall coefficient for shungite is comparable to the
Hall coefficient for low-temperature (temperature 1300–1600 ◦C) glassy carbon, which is also
temperature-insensitive [67]. It is interesting that the Hall coefficient for high-temperature
glassy carbon (above 1700 ◦C) already has a positive sign. At the same time, the dependences
of ρ and µ from temperature differ qualitatively from those for single-crystal graphite.

The direct current conductivity of shungite carbon from the Shunga and Maksovo
occurrences at low temperatures was estimated in [64,68], and an example of dependence,
σ(T), is shown in Figure 9. This study showed a higher conductivity of shungite from
Maksovo. The conductivity of shungite from Shunga slightly depends on the temperature.
The dependence of the electrical resistance of Maksovo and Shunga shungites on tempera-
ture upon heating [69] shows a decrease in resistance typical of the semiconductor type of
conductivity upon heating from room temperature to 900 ◦C.
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Table 1. Conductivity of some natural Dsp2C disordered carbon samples.

Sample, Occurrences Conductivity (S/m)

Shungite (ShSh1), Shunga, Karelia 8000 [64]; 4700 [63];
4670 [69]; 14,600 [68]

Shungite (ShM1), Maxovo, Karelia 2000 [63]; 1640 [69];
1200–1500 [our data]

Shungite (ShCh1), Chebolaksha, Karelia 1100–1200 [our data]
Shungite (ShN1), Nigozero, Karelia 1250 [63]

Anthraxolite (ANZPr), Perya,
Novaya Zemlya Island, Russia 200–600 [our data]

Anthraxolite (Columb), Colombia 0.5–1 [our data]
Anthraxolite (ANZPa), Pavlovo,
Novaya Zemlya Island, Russia 100–300 [our data]

Anthraxolite (ABak),
Bakyrchik, Kazakhstan 0.1–0.3 [our data]

Similar results to the semiconducting type of dynamic conductivity of the shungite
carbon from the Shunga and Maksovo occurrences was found in [70]. The behavior of the
electrical conductivity in the temperature range of 77–300 K was similar to that described for
semiconductors. At low temperatures, there are three successive types of dependence. First,
growth occurs at the donor type of conductivity. At temperatures below 1/2Θ (where Θ is
the Debye temperature), electrons scatter on impurities or lattice vibrations, so the electrical
conductivity decreases with increasing temperature. At temperatures above 1/2Θ, the
electrical conductivity starts hopping and increases again with increasing temperature [71].

In general, the nature of the electrical conductivity of natural Dsp2C at direct current
is ambiguous. Here, perhaps, we meet the influence of the geological origin, where there
are some differences in the structure and elemental composition of the samples even within
the same occurrence. From this point of view, studies of electron paramagnetic resonance
(EPR) spectra are interesting [11]. The EPR spectrum of natural carbon compounds can be
conditioned by both conduction electrons (an example of graphite is given in the work [72])
and unpaired electrons in free radicals (charcoal, anthracite [73]) or transition metal com-
plexes. The works [64,74] indicate that the EPR signal of shungite is mainly conditioned by
conduction electrons with Pauli-type magnetism. The authors give the calculated number of
conduction electrons as 1.33 · 1019 spin/g. The same order of magnitude of the number of
unpaired electrons (1–8 · 1019 spin/g) is given in [75] for shungites from Shunga, Maksovo,
Nigozero, and Chebolaksha occurrences. Thus, the EPR signal can be divided into two
components: the first is associated with localized unpaired electrons (or with electrons in
which delocalization is limited), and the second, independent of temperature, is conditioned
by conduction electrons [11]. On the other hand, a dependence of the conductivity of shun-
gite during high-temperature heating, similar to polycrystalline disordered graphite and
synthetic glassy carbon, indicates the proximity of the semiconductor’s type of conductivity.

The conductivity of anthraxolites at direct current is much worse than that of shungite
carbon from Karelia. At best, the conductivity of anthraxolites is hundreds of Sm/m (Table 1).
For example, the conductivity of anthraxolites from various occurrences of Novaya Zemlya
Island, Russia, varies from 200 (Pavlovo occurrence) to 600 S/m (Perya occurrence), and
the conductivity of anthraxolites from Kazakhstan, the Crimea, and Colombia is tens to
fractions of S/m.

Interesting local features of conductivity were found using atomic force microscopy [76,77].
Local areas on the carbon surface of shungites with dielectric properties were found using
spreading resistance microscopy and electric force spectroscopy [77]. In the region of both
positive and negative applied voltages, shungites and anthraxolites have hysteresis of volt-
ampere characteristics (VAC) in separate areas (Figure 10). For the previously described
nanogranular metal-dielectric composites, such a hysteresis of VAC is explained by the
processes of polarization of the dielectric component [77]. It can be assumed that at the
points of taking such VACs on the surface of shungite, the amount of impurity elements
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(chlorine, nitrogen, oxygen, sulfur) locally reached values significant for changing the
electrically conductive properties of the surface.
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the voltage (curve 2).

4.2. AC Conductivity

Let us consider the frequency dependence of the electrical conductivity of natural
Dsp2C. We have found three fundamentally different types of such a dependence, which
allows dividing the samples of Dsp2C into three groups (Figure 11). The first group of
samples shows a complete absence or a weak dependence in the low-frequency region
up to a frequency of 2–4 MHz. With a further increase in frequency to 15 MHz, the
conductivity begins to decrease sharply, by one and a half to two times. These samples
include a reference sample of natural graphite and three samples of Karelian shungite.
Samples of anthraxolites, one of the samples of Karelian shungite, and a sample of Kozhim
carbon show an almost complete absence of dependence of conductivity on the frequency
of alternating current up to a frequency of 15 MHz. Finally, the Kazakhstan anthraxolite
sample shows a continuous linear weak increase in conductivity with increasing frequency.
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islands (ANZPa, ANZPr), and Colombia (Columb).
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The frequency dependence of the total electrical resistance (impedance) for our samples
divides them into two groups (Figure 12). In the first group, the impedance increases
linearly and monotonically with increasing frequency. This group includes samples of
Maksovo, Shunga, and Chebolaksha shungites, Pamir graphite, anthraxolites from Novaya
Zemlya islands, and disordered carbon from Subpolar Ural (Kozhim), Russia. In the second
group, represented by the remaining anthraxolites, the impedance slightly decreases with
increasing frequency.
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Figure 12. The dependence of the impedance on the frequency (a—samples with an increase in
impedance. b—samples with a constant or decreasing impedance). Samples code: Pamir—graphite;
ShCh1, ShSh1, ShSh2, ShM1—samples of shungite carbon from various occurrences of Karelia;
anthraxolites from Kazakhstan (Abak), Novaya Zemlya islands (ANZPa, Calcit, Eg), Colombia
(Columb), and Subpolar Ural, Kozhim river (EGAKG).

The presence of such a dependence is determined by the reactive component of the
resistance (capacitive or inductive). According to the measurement results, the dependences
of the inductance on frequency were found and evaluated in all samples of shungite
and in most samples of anthraxolites, with the exception of Kazakhstan and Colombian
anthraxolites, in which a capacitive dependence was found.

It can be assumed that the super-molecular structure is influencing here. The type
of resistance (inductive or capacitive) is formed by the elements prevailing in the super-
molecular structure, which primarily include stacks of graphene layers and ribbons. The
capacitive type of resistance of the Bakyrchik and Colombia samples can be associated with
their dominant stacks structure.

For the vast majority of samples, the reactance increases almost linearly with frequency.
In the case of an inductive type of resistance (reactance X = ωL, where ω = 2π f ) with
increasing frequency, f, the reactance, X, also grows linearly, so the inductive resistance,
L, practically does not depend on frequency and does not contribute to this dependence
(Figures 12 and 13). In the case of a capacitive type of resistance (reactance X = 1

ωC ) for
the Abak and Columb samples, it is the capacitance that makes the determining contribu-
tion (see Figure 13). In each frequency interval, the capacitance decreases more than the
frequency increases, which determines some increase in reactance.
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As our studies have shown, samples from the Maksovo and Shunga deposits exhibit high
microwave reflective and conductive properties [78,79]. Even ultrathin shungite plates with
a thickness of 8–15 µm in the ranges of 8–12 and 26–38 GHz reflect (95 ± 2)% of the total
incident radiation, and the shielding efficiency reaches almost 100% (Figure 14) [80]. It should
be noted that the microwave reflective properties of shungite plates are practically independent
of frequency, keeping them in a wide range [79]. Surprisingly, shungites have a high reflection
of microwave radiation even with not too high static conductivity. Metals achieve this efficiency
of microwave reflection at conductivity higher by one or two orders of magnitude.

Theoretical evaluation of the dynamic conductivity of Maksovo and Shunga shungite
samples at gigahertz frequencies by measuring the microwave reflection from ultrathin
(8–15 µm in thickness) shungite plates showed that the dynamic conductivity in these
frequency ranges was about one and a half times higher than the conductivity at direct
current [79]. Thus, the frequency dependence of the conductivity of natural disordered
carbon in a wide (kilo-, mega-, and giga-hertz) frequency range is ambiguous. In the
megahertz range, the conductivity decreases with frequency; in the gigahertz range, the
dynamic conductivity exceeds the static one.
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Figure 14. The dependence of the reflection (a), transmission (b), and absorption (c) of electromag-
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Approximation (red line in (a,b)) is performed at a frequency of 31 GHz (from [80]).

5. Models of Electrical Conductivity

The conductivity features of natural Dsp2C are determined by its multilevel structure.
At the molecular level, these are graphene layers, partially curved and with defects; at the
supramolecular level, these are nanosized packs of graphene layers, multilayer ribbons,
and globules that form larger aggregates (blocks, chains), reaching micrometer sizes. Addi-
tionally, microporosity affects on the electrical conductivity. Let us consider these structural
features sequentially.

5.1. Molecular Conductivity

At the molecular level, in disordered graphitic carbons, electrical conductivity gener-
ally increases with an increase in the ratio of sp2/sp3-hybridized bonds due to the delocal-
ized electrons introduced by the sp2 bond [81]. This delocalization facilitates the transport
of electrons in the plane of the graphene layer, making it highly conductive, in contrast
to the high resistivity in systems containing a rigid network of localized sp3 bonds [82].
Additionally, edge functional groups, such as carbonyl, carboxyl, and lactone, which frame
the edges of graphene layers in disordered carbon (Figure 15), significantly affect molecular
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conductivity [6,52]. The presence of such functional groups and the fragmentation of the
structure contribute to a significant decrease in electrical conductivity. This relates to the
destruction of the π-conjugated system of bonds and their overlapping by the indicated
groups. The removal of most functional groups from the edges of graphene layers during
the thermal and chemical transformation of bitumen in the geological environment results
in the rearrangement of the π-conjugated system. The increase in conductivity occurs
due to the removal of the functional groups of the base planes in the packs of graphene
layers in the process of reduction of mobile oxygen-containing groups and destruction
of hydrogen-containing groups. The key importance of such a chemical transformation
with the removal of functional groups is shown in [83], where the thermal destruction of
hydrogen-containing groups in bitumen of an average degree of transformation contributes
to the appearance of electrical conductivity before the start of graphite-like ordering of the
structure. The last factor distinguishes the molecular mechanisms of the conductivity of
synthetic glassy carbon and natural disordered carbon, since glassy carbon is much more
“pure” and functional groups practically do not affect its conductivity.
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Thus, in disordered carbon, one can note the key importance of intrinsic electronic
conductivity, which is conditioned by the presence of a large number of honeycomb
graphene structures. It is likely that an additional contribution to the conductivity can
be made by impurity p-type conductivity associated with the presence of heteroatoms at
the edges of the graphene layers. These chemical elements (primarily oxygen) play the
role of donors, and when interacting with the molecular structure, they create defects,
which contributes to an increase in the number of free charge carriers (electrons). However,
taking into account the low concentrations of heteroatoms remaining in the structure of the
considered carbon materials, the contribution of the p-type conductivity can be considered
significantly less significant than that of the n-type conductivity [11].

EPR studies also present a large number of conduction electrons with Pauli-type
magnetism [64,74]. In addition, shungites and anthraxolites contain localized unpaired
electrons not associated with π-orbital states, which can be included in chain carbon
compounds at the edges of graphene layers, and free bonds of σ-orbitals with sp2 carbon
atoms in the composition of functional groups [11]. Part of the sigma-free bonds can be
neutralized by heteroatoms. The unsaturation of these bonds is probably conditioned by
the complex structure of disordered carbon, since they can be located in the gaps between
the graphene layers or in closed pores, where the access of non-carbon atoms is difficult.
It is noteworthy that the shape of the EPR signal and its temperature dependence for
shungites and anthraxolites are similar to the EPR characteristics of onion structures and
other materials where carbon is in different hybrid states.
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5.2. Super-Molecular Conductivity

The fundamentally different nature of the frequency dependence of conductivity and
different types of resistance of shungite and anthraxolite samples from different deposits
indicate that the super-molecular structure of natural Dsp2C is very diverse. Even samples
with similar molecular structures can show different types of conductivity, which indicates
the predominant influence of nanosized structural elements. As mentioned above, the
main structural units in our samples are bundles of often distorted and curved nanoscale
graphene layers, multilayer ribbons, and (to a lesser extent) closed multilayer globules.

An essential role in conductivity is played by the sizes of super-molecular structural
elements. If the sizes of stacks of graphene layers < 100 nm, then the mechanism of
scattering of charge carriers at inter-pack boundaries is dominant [84]. This scattering
is largely determined by the distance between the stacks. A theoretical analysis of the
effect of the nanostructure on the conductivity of Dsp2C based on the structure as a set
of stacks of graphene layers was carried out in [85–87]. Here, the chaotic nature of the
structure of shungite carbon was reduced to a regular model of parallel conductive tubes
from sequentially arranged stacks of graphene layers with dimensions of a few nanometers
(Figure 16) [86]. The comparison of the model with the real structure was carried out on the
example of two shungite samples from the Maksovo and Nigozero occurrences, in which
the average sizes of the stacks and the gaps between them were estimated using high-
resolution transmission microscopy methods [85,87]. In these samples, the average sizes of
packs of graphene layers and the gaps between them differ significantly. The study of the
dependence of the resistance of the gap between the stacks on the size of the stacks and the
size of the gap between them showed that the resistance of the gap significantly decreases
with the increasing size of the stacks, but at the same time reacts poorly to an increase in the
gap size, and the resistance of the gap between the stacks is inversely proportional to its size.
The model of current tubes allows establishing a correspondence between conductivity and
sizes of gaps and stacks of graphene layers. These calculations showed the key effect of
gap size and orientation of graphene stacks on conductivity versus stack size [85,87]. This
model is the first approximation to the electrically conductive model of shungite carbon,
and on its basis a general conductivity model for Dsp2C can be developed.
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stacks of graphene layers.

Nevertheless, in a constant electric field, electrons pass through the sample throughout
its entire volume: through the boundaries of blocks and globules, along graphene layers,
and from layer to layer. Some of the conductive bonds are likely to have high-energy
barriers, so there may be several key paths with the least resistance for current to flow.
Indeed, even at a low temperature, effective conductive bonds are preserved. According to
the authors of [64], this feature distinguishes natural Dsp2C, for example, from artificial
activated carbon fibers, in which with decreasing temperature, the resistance increases
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ten-fold. This indicates the high quality of electrical contacts between the super-molecular
structural units of Dsp2C.

In some samples, a significant increase in reactance with frequency indicates an induc-
tive type of conduction. Previously, non-conductive inclusions up to several micrometers
in size were found in shungite samples, which are covered with a thin film of well-ordered
graphitic carbon. Such carbon structures can act as inductors [88,89]. As well as inductors,
multilayer bent ribbon structures of carbon can act, which are randomly intertwined and
have a length of up to hundreds of nanometers and units of micrometers.

The high conductivity of nanoscale structural elements of shungites is evidenced
by their high shielding properties. In the most general case, the shielding properties
of shungite are determined by its conductivity. The chaotic structure of the conducting
regions ensures the isotropic nature of the conduction. Dynamic microwave conductivity is
provided by currents circulating inside the local conductive sections. That is, the dynamic
conductivity can be quite high even in the absence of direct contact on direct current or
with a significant resistance of the gap between the carbon structural elements.

In [80,90,91], schemes were proposed for the interaction of electromagnetic radiation
with shungite carbon (Figure 17). Although, it should be noted that in [90,91], the pressed
powder from the shungites of the Zazhoginsky occurrence with a carbon content of about
30% was studied. It is shown that the shape of the transfer coefficient curve for shungite
powder is typical for broadband absorbers, which may be due to high dielectric losses. The
authors of the papers do not rule out that multiple re-reflections and absorptions take place
in layered carbon structures. This is accompanied by a decrease in the resulting electrical
component in the direction of transmission. At the same time, multiple internal reflection
of electromagnetic waves is provided precisely by carbon micro- and nano-structures and
porosity. In addition, the absorption properties are improved even with a small content
of heteroatoms (H, O, N, S), which produce polarization centers and enhance absorption
properties [80].
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Thus, the most significant features that determine the electrically conductive proper-
ties of shungite are conditioned by: (i) nanosized graphene layers, (ii) bending of graphene
layers, indicating the presence of topological defects and the appearance of sp2 hybridiza-
tion, and (iii) a significant amount of edge states at the boundaries of open fragments
of graphene layers terminated by functional groups. With a high probability, there is a
double mechanism of electron transport in natural Dsp2C. The first is conditioned by the
presence of stacks of graphene layers and multilayer ribbons, within which the ballistic path
predominates, as in ordered graphene. Between the stacks of graphene layers, electrons
are scattered by defects and impurities; therefore, the mechanisms of electron tunneling
through potential barriers and diffuse mechanisms are actively switched on here.

6. Technological Applications of Electrophysical Properties of Natural Disordered Carbon

Recently, many studies have been carried out on various properties of natural Dsp2C in
technological applications, and electrical conductivity is among the most demanded properties.

One of the most promising directions for the use of natural Dsp2C is the use of com-
posite radio shielding materials as an active filler. The impact of electromagnetic radiation
of various nature on technical and biological objects significantly affects their functioning.
A significant increase in the number of sources of electromagnetic radiation (mobile ra-
dio communications, computer equipment, overhead power lines, radar stations) makes
protection against electromagnetic effects in a wide frequency band very relevant [92–97].
At present, biomedical, hygienic, and environmental aspects of electromagnetic radiation
have acquired particular relevance. The most effective from the point of view of shielding
electromagnetic radiation metal screens, which have high conductivity and, accordingly,
strong reflection, interfere with the radio-electronic equipment operating in the room and
create an unfavorable electromagnetic environment. Therefore, various loss mechanisms
must be implemented in the screens: dielectric and magnetic losses, dispersion, diffrac-
tion, interference, and internal re-reflections of electromagnetic waves, causing additional
weakening of the energy of an electromagnetic wave due to Rayleigh scattering, addition
of waves in antiphase, etc. Shungite powder, due to its inhibitory properties, composite
composition, low cost, and lightweight can be used as a component for the production of
materials that provide effective shielding of electromagnetic radiation [70,90,98–100]. In
addition, for example, shungite materials at a certain concentration of carbon have not
only reflective, but also good absorbing properties, which expands the possibilities of their
use for shielding electromagnetic radiation. For example, recently, from shungite, flexible
ultrathin (about 10 µm in thickness) plates were produced with shielding of almost 100%
of the incident microwave radiation in the frequency ranges of 8–12 and 24–36 GHz, while
absorbing half or most of the radiation [80]. The results of studies of the effect of conduc-
tive carbon filler have been published in many works, for example [92–97,101]. Shielding
materials based on polymers with similar protection characteristics are several millimeters
thick. Therefore, materials based on natural carbon with a thickness of about 10 µm can
be used in technological devices in conditions of very limited space. The electromagnetic
radiation protection characteristics of carbon-based geomaterials can be easily adjusted
and improved by adjusting the appropriate carbon content of the material or by modifying
them thermally or chemically [70,102–105].

The electrically conductive properties of Dsp2C can be used in construction and
transport. Cement-based electrically conductive composites are a typical example of
multifunctional composite materials. For electrical conductivity in the cement matrix, it
is necessary to introduce electrically conductive additives, among which carbon fillers
are widely used, including materials based on graphite [106]. Changes in temperature or
mechanical stress change the electrical properties of such cementitious composites, allowing
them to be used, among other things, as temperature or voltage sensors for detecting
damage in building structures, weighing vehicles in traffic, or monitoring the temperature
of pavement or building walls. In [107], it is shown that shungite carbon is a very promising
electrically conductive additive for cement composites. The introduction of at least 16 vol.%
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shungite imparts electrically conductive properties to cement composites and allows them
to be used for stress/damage or temperature monitoring with high sensitivity. Radio
shielding of walls is also of interest [108]. A thermoelectric effect has been found in cement
composites with shungite carbon. Similar properties are expected for materials filled with
disordered carbon from the Bakyrchik occurrence, East Kazakhstan [109,110].

Carbon materials are promising components for energy storage devices, such as su-
percapacitors and lithium-ion batteries, due to the reversible reaction between carbon and
lithium-carbon compounds [111–113]. Intensive research is now underway on various
carbon structures, aimed at finding the most effective and affordable materials for achieving
high storage capacity of lithium ions in the field of renewable energy sources. Among
these structures, much attention is paid to multilayer graphene [114–116]. To achieve a high
storage capacity of lithium ions in synthetic carbon materials, functional groups, surface
area, pore size distribution, and other parameters are widely varied. All these characteristics
vary widely in natural Dsp2C from different occurrences. The research results published
in [117] showed that shungite carbon can serve as an alternative and effective resource
for lithium-ion battery electrodes. Already after simple processing, the storage capacity of
shungite material (approximately 400 mAh/g) significantly exceeds the capacity of graphite,
which also has a limitation (372 mAh/g). This ability is probably related to the disordered
structure of the stacks of graphene layers and their partially open edge atoms. Further
research in this area can contribute to the production of environmentally stable and cheap
materials with high electrochemical characteristics based on disordered natural carbon.

Advances in the production of polymers with intrinsic electrical conductivity have
not canceled the production of polymers filled with an electrically conductive filler, due
to the rather complicated synthesis and instability of conductive polymers, as well as
the difficulty in obtaining samples that combine good electrical and physical-mechanical
characteristics. Such properties of natural Dsp2C as good compatibility with both polar and
nonpolar polymers turned out to be important to create polymer composite materials with
electrically conductive properties, which makes it possible to obtain compositions with
high degrees of filling. In turn, this allows varying the conductive properties of polymers
over a wide range, and to obtain polymers with more stable characteristics, including when
exposed to different temperatures [118].

A complete and detailed review of the areas of technological application of synthetic
Dsp2C (glassy carbon) was presented in [1,80]. The similarity of the structural characteristics
and electrophysical properties of natural and synthetic Dsp2C suggests the interchangeabil-
ity of these materials in technological processes. For example, the use of glassy carbon as
an antistatic agent in electrically insulating thermoplastic polymers has recently been pro-
posed for the production of antistatic packaging, which is used in the electronics industry
to protect electronic components from electrostatic discharge. Glassy carbon particles form
electrically conductive paths in such polymers and avoid the accumulation of electrostatic
charges [119]. As shown above, natural Dsp2C can also be successfully used to produce
conductive polymers. However, some chemical differences caused by differences in pre-
cursor hydrocarbons, and some instability in the composition and properties of natural
material, do not allow replacing one material with another without additional studies.

7. Conclusions

Natural disordered sp2 carbon has a diverse molecular and chemical structure, which
determines the diversity of its electrophysical properties. Natural Dsp2C is almost a complete
analogue of glassy carbon in terms of properties and structure and can be considered
as an environmentally friendly and cost-effective replacement for glassy carbon in these
applications. The diversity of the molecular and super-molecular structure and the features
of the chemical composition of impurities, despite their relatively low content (a few percent),
determine the variety of electrical properties. The wide range of absolute conductivity, such
as resistance (inductive and capacitive), and the presence of various effects (Hall and others),
makes natural disordered carbon a promising object for various technological applications.
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At present, Dsp2C has a good prospect for use in energy storage for the manufacture of
materials that shield and absorb high-frequency electromagnetic radiation.

Natural materials are interesting because the synthesis of such materials is difficult.
In geological conditions, the processes of their formation take hundreds of thousands and
millions of years, and almost all chemical reactions are completed. There is no such amount
of time in the laboratory so it is necessary to use catalysts to speed up chemical reactions.
This leads to possible changes in the structure of the material and additional costs for
the search of catalysts. Natural material, despite its frequent variability in composition
and structure, has some unique properties that are difficult or impossible to obtain in the
laboratory, so it is important to keep such materials in the focus of attention of researchers
in various fields of science.
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